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Abstract. An inversion procedure which provides the most conservative inference for an
unknown function in terms of partial data is discussed on the basis of information theoretic
considerations. The method is based on the procedure of maximal entropy, but is not
limited to the estimation of unknown probabilities. Rather, inductive inferences can be
drawn regarding the values of general (if necessary, dimension-bearing) variables. The
solution of an inversion problem using data linear in the unknown function is discussed in
detail and explicit results are obtained. For every class of problems with common symmetry
properties, the general algorithm can be reduced to a more direct procedure. When the data
consist of average values for an unknown distribution, the general approach is in the spirit of
the Darwin~Fowler method, while the reduced route is the procedure of maximal entropy
(‘method of most probable distribution’) as usually employed in statistical mechanics. Other
classes of problems discussed include the representation of an unknown function in a
complete orthonormal basis using as input a partial set of expansion coefficients, and the
inference of line shapes and power spectra.

1. Introduction

An inversion procedure is required whenever the available measurements depend on
the value of a function of interest at more than one point. A well-known exampie is the
determination of the interparticle potential from scattering (or transport) measure-
ments. Another familiar example is in statistical mechanics, where the probabilities of
occupation of the different quantum states are determined, say, from the given average
energy of the system. There is, of course, an essential difference between our usual
approaches to these two (and similar) problems. In the former we require extensive
data before we proceed, while in the latter a seemingly insufficient characterisation of
the unknown probabilities is deemed to be an appropriate starting point. The purpose
of this paper is to advocate the adoption of the guiding principles of the methods made
familiar by statistical mechanics to other inversion problems where a similar need
arises. The present approach is similar in spirit to the Darwin-Fowler (1922) method,
but for reasons which will become obvious it uses Lagrange multipliers rather than the
steepest-descent technique. On the other hand, it is very much motivated by the
information theoretic approach (Jaynes 1957, 1963, Tribus 1961) to statistical
mechanics.

+ Work supported by the Office of Naval Research.
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One can argue that the methods of statistical mechanics are particularly geared to
the physics of the problem and so cannot be applied indiscriminately elsewhere. Maybe
so, but the prospect of an inversion procedure using incomplete data is perhaps of
sufficient interest to warrant a closer examination. One can also argue that the essential
difference between the two problems above is not one of physics but of a methodologi-
cal point of view; whereas one wants to deduce the potential, one is quite accustomed to
inducing a probability distribution. In other words, one can regard statistical reasoning
as an application of the methods of inductive inference (Jaynes 1957, 1963, Tribus
1961, 1969, Levine and Tribus 1978). There is then no inherent objection to employ-
ing similar methods for other problems involving only a partial characterisation of the
variable of interest.

Section 2 defines the problem in a technical sense, and shows that a solution of the
inversion problem is possible. It does so by introducing a ‘reciprocal’ basis set, whose
dimension equals the number of independent pieces of data (the ‘constraints’) that are
available. Using this basis it is always possible to invert the implicit equations which
define the variable of interest. The procedure of maximal entropy as applied to the
inversion problem is discussed in § 3. Section 4 provides explicit discussion of four
classes of problems, whose common denominator is that the available data are linear in
the variable of interest. The discussion is also used to offer complementary inter-
pretations of the formalism. In particular it is shown that (as in statistical mechanics) it
is not necessary to go back to the full formalism every time a new problem is considered.
Instead, one can use a simpler form of the entropy (or of the partition function) which is
suitable for the class of situations of which the particular problem is a member and
proceed from there. Work is in progress on various practical aspects of the formalism
(as is discussed in § 4.3) and on concrete applications of the inversion procedure, with
special reference to the determination of potentials from scattering data, in collabora-
tion with Professor R B Gerber.

2. General considerations

Consider a variable u which assumes the value u; at the pointt /, i =1,2,...,N. The
purpose of the inversion procedure is to determine the set of values u;, The data
available are the values of different functionst of v,

Ar:fr(u), r=1,2,....,.M, M<N. (1)

The vector notation for the argument of f, serves as a reminder that f,(u) will in general
depend on the value of # at more than one point. The simplest example is that of a
linear condition

N
A, = ‘Zl Arilli, (2)

i

where the matrix a is given.

t To keep the mathematics simple we shall (if necessary) proceed to the limit where / is continuous only at the
final stage of the procedure. Otherwise one needs to interpret various derivatives as functional derivatives.
i To ensure the uniqueness of the procedure these conditions need to limit the range of possible solutions to a
convex set, so that a linear combination of possible solutions is also a solution. If they do not, then the
procedure may be applied by regarding f,(u) itself as the unknown function.
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The problem is that the range of r is smaller (or even very much smaller) than that of
i. Hence the M conditions, (1), do not in themselves suffice to determine the u;s
uniquely. The conditions do however constrain the range (which we assume to be
convex) of possible solutions, and the problem is to further narrow down the choice to
some particular vector y which will be the ‘best’ inference for the unknown u.

2.1. The reciprocal basis

That a solution to the inversion problem is not out of the question is suggested by the
following argument. Consider for simplicity the linear case

ay = A, (3)
If a is a square matrix and has an inverse, one can solve for y directly:

y =bA or vi=Y b,A, (4)
where '

ab=1 (5)

Now the whole point is that a is not square. One can still however satisfy (5) as follows.
The components of y are to be determined using the given values of the A,s. Different
values may well yield a different inference for y. Hence y is a function of A, and one can
define a rectangular matrix b by

bir = 3yi/3A.,. (6)
Then a and b are conformable, and

(ab)s, = 0A,/0A,. 7
The condition

dA/BA; =8, (8)

where &, ; is the Kronecker delta, is simply the condition that the constraints are linearly
independent, i.e. that there is no non-trivial set of numbers «, such that

M

@o= 21 af(y). 9)
If in practice this is not the case, then the number of constraints can be reduced until
only a linearly independent set is left. It can be shownT that the constraints that have
been so eliminated are non-informative in the sense that their inclusion would not
change the inference regarding y.
In the Appendix it is shown that the inversion procedure introduced in § 3 defines
the reciprocal set even for non-linear constraints, and a simple example is worked out.
The observation that y is a homogeneous function of degree one in the A,s is also of
importance in showing that if y bears dimensions then it will scale properly whenever
the units used to express the value of A, are changed.

+ The proof is based on showing that the distribution P{x) which is introduced below and which is used to
define y (cf (10)) is unchanged by the elimination of the linearly dependent constraints (see e.g. Alhassid e a/
1978). There is no harm in including linearly dependent constraints; these only lengthen the algebra, but may
offer other advantages, as is discussed in § 4.
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2.2. The distribution P(x)

To determine the solution y explicitly, consider expanding it in the set {x} of all
potential solutions of the inversion problem,

yi= Y, x:P(x) (10a)
if y; assumes only discrete values, or
yi= J dx x,P(x) (105)

if y; is a continuous variable. The weight function P(x) is unknown except that y; must
satisfy the M conditions (1), i.e.

A=Y am=3 (; a,,.x,-)p(x), (11a)

X

or if y; is continuous,

A= J dx (z 4 P(%). (118)
For non-linear constraints, we take the conditions on P(x) to be

A, = f dx f,(x)P(x), (12)

with an equivalent form for the discrete case.

The distribution P(x) can be regarded as the weight of the vector x, and definition
(10) implies that y can be interpreted as the average over the distribution P(x). The
reason for defining y as the average rather than any other statistic of P(x) is the familiar
one that the average is the ‘best’ estimate in the sense that the expected square deviance
of y from the exact solution u will be minimal. The present approach is thus similar to
the point of view adopted in the Darwin-Fowler (1922, see also Schrodinger 1952)
formulation of statistical mechanics. It does differ however in one essential detail,
namely that we do not necessarily centre attention on the limit where the variance of
P(x) is very small.

2.3. Information theory

The vector x is a sequence of numbers x; and can thus be regarded as a message in the
sense of information theory. In his fundamental study, Shannon (1948, § 7, theorem 4
in particular) introduced entropy as a measure of choice between messages. Since we
are looking for a distribution which represents the widest choice (and hence does not
unduly favour any particular x), we should take P(x) as the distribution of maximal
entropy which is consistent with the constraints. This is the method of inference
advocated by Jaynes (1957, 1963) except that, unlike the situation in statistical
mechanics but as in Shannon’s work, the probability distribution so computed has no
direct observational relevance. It is simply a measure of the range of vectors x and so
determines the sharpness of the inference. The narrower the distribution, the more
likely is y to be an accurate estimate. The spread in P(x) is simply the price one pays for
inverting with only a partial characterisation of the variable. As a consistency check,
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one should note however that if the constraints do suffice to specify a unique solution,
then the same solution will be given by the maximum entropy formulation (since P(x) is
then a Kronecker (or Dirac) delta). Another consistency check is that the spread is
typically reduced (and definitely does not increase, cf § 3.4) upon adding constraints.

3. The procedure of maximum entropy

The general considerations of § 2 call for the determination of the distribution P(x) as
the (unique, cf § 3.4) distribution of maximal entropy among all those distributions
which are normalised,

Y P(x)=1, (13)
and consistent with the constraints
A, =Y f.(x)P(x), r=0,1,..., M. (14)

In what follows we define fo(x) =1 so that (14) represents M + 1 constraints, with A,
being the value of the normalisation sum.

While the solution of this constrained maximum problem is standard and has been
explicitly considered (Tribus 1969), it does require some comments, particularly
regarding the concept of the prior distribution.

3.1. Entropy and entropy deficiency

Given a set of messages, say {¢}, such that in the absence of any data they are all equally
likely, the entropy of the distribution of messages is given by (Shannon 1948, Khinchin
1957)

Sle]=-Y, P(e)In P(e). (15)

It follows from the convexity of the logarithmic function that S[e] is indeed maximal for
a uniform distribution.

Itis not unusual however to have to deal with messages where even in the absence of
any specific constraints our prior knowledge dictates that not all messages are equally
probable. The example discussed in detail in § 4.1 is that of repeated independent
experiments (so-called ‘Bernoulli trials’). Say the message » is the set of numbers {n,},
where n; is the number of times the ith outcome was observed to occur. Then even if all
outcomes (in a single experiment) are equally probable, some sets of numbers {»;} are
more likely than others. The reason, as is well known, is that many sets {»,} can be
realised in more than one way. Specifically, if all outcomes are equally probable, the
message n can be realised in g(n),

gln)= n!/ﬁl1 n!, (16)

ways, where n = I; n; is the total number of trialsand X, g(n) = 2" is the total number of
distinct sequences of outcomes. Interms of the probability P(n) of a particular set {«,},
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P(e) is thus given by
P(e)=P(n)/g(n), (17)

and so, using (15),
S[e]=S"(e]-Y P(n) In(P(n)/P°(n)). (18)

Here S$[e],
sTel=1n(% g(m), (19)

is the maximal value of S[e], and the second term in (18) is strictly non-negative (Levine
and Bernstein 1976) and is termed ‘the entropy deficiency’. Itis the difference between
the global maximum and the actual value of the entropy. To compute the entropy
deficiency (or the entropy) one thus requires both the actual, P(n), and the prior, P°(n),
distributions

Py=gn) [Sem,  Pe=1/Y g (20)

If (and only if) P(n) = P°(n), then S[e]= S°[e]. The distribution of maximal entropy is
thus unique, and as in other applications (Levine and Bernstein 1976, Levine 1978) we
reserve the term ‘prior’ for the distribution determined to be of maximal entropy
subject only to those constraints that are always present. As in the example above, such
constraints typically reflect some symmetry that is inherent in the problem. In other
words, g(n) is typically a degeneracy factor, i.e. the number of distinct messages that are
grouped together (that are not resolved) by the index n.

The constraints imposed in determining the prior distribution are inherent in the
problem and are unchanged when additional data are available (excluding of course the
obvious exception where the additional data imply that the degeneracy has been broken
by some means). They are taken into account by writing the entropy as in (18) and are
therefore automatically included when the entropy is maximised. If additional con-
straints are present, the maximal value of the entropy (subject to these constraints) will
then be lower than S° and the entropy deficiency will be positive (cf § 3.4).

3.2. The distribution of maximal entropy

The uniquet distribution P(x), which is of maximal entropy subject to the constraints of
normalisation and to M data constraints (14), is readily determined, using the Lagrange
undetermined multipliers procedure, to be of the form

M
Plx)=g(x) exp(~ > /\,f,(x)>. (21)

The M +1 (Lagrange) parameters are determined by the M + 1 conditions (14). The
resulting set of equations

Y A (x)P(x)=0, (22)

+ The distribution is unique whether the constraints are linearly independent or not, but uniqueness does
require that the set of functions which are consistent with the value of constraints be convex.
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where f,(x) = f,(x)— A, is coupled and highly non-linear. Except for special circum-
stances, an analytlcal solution for the A,s is not possible. An efficient numerical
procedure (Alhassid er al 1978) has however been described, and the program,
including user’s instructions, is available from the author upon request.

In principle, the Lagrange parameters can be computed from the entropy of the
distribution P(x), which, using (18), is

Six]= il A, (23)
r=0

and hence (using (A1))
A, =0S[x]/0A.,. (24)

Either (23) or (24) shows that if A, does bear dimensions then so does A,, and it does so
in such a manner that if the units used to express the value of A, are changed, then the
value of A, will change by a corresponding amount, leaving P{x) invariant.

The functional form (21) demonstrates explicitly that, while the distribution P(x) of
maximal entropy is unique, the constraints and their conjugate Lagrange parameters
are not. One can always define equivalent constraints via the linear combinations

ho(x) =2 duf,(x), (25)

which will yield an identical distribution P(x) provided only that the Lagrange
parameters conjugate to the new constraints denoted by w,,

Ar=Y psdy, (26)

transform in a contragradient manner. Indeed, the matrix d need not even be square,
and in this fashion one can eliminate (or introduce) linearly dependent constraints. This
freedom allows us to offer an alternative interpretation of P(x). Consider linear
constraints

N
fr(x) = ‘Zl AriXi. (27)
Then one can rewrite (21) a
P(x)=g(x) exp( Z u,x,>, (28)
where
= Z Arari- (29)

The functional form (28) can be derived directly as the distribution of maximal entropy
subject to the (possibly not linearly independent) y; ={x;), i=1, ..., N, as constraints.
This conclusion will be shown in § 4 to offer a reduced level of description where no
reference to P(x) need be explicitly made.

3.3. The reciprocal basis

The M +1 Lagrange parameters and hence P(x) can be regarded as functions of the
M +1 constraints A,. Indeed the distribution of maximal entropy is a homogeneous
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function of degree one in the constraints (Robertson 1967):
M
P(x)=) A,0P(x)/0A.. (30)
r=0

Intuitively the result is obvious. If all the constraints (including A,) are scaled by the
same factor, then clearly P(x) should be unchanged. A short algebraic proof is given in
the Appendix, where a simple example is also worked out. An important point to be
noted is that the M + 1 constraints (and hence the M + 1 Lagrange parameters) must be
regarded as independent variables in (30). This is in contrast to the common procedure
in statistical mechanics which assigns A, the value unity from the very start, and thereby
makes A a function of the other M Lagrange parameters.

It follows from (30) that any expectation value computed using P(x), e.g. A, g > M,

M
A =L fi(®P0)= Y, AaA,/oA, (31)

and in particular y ={x), is a homogeneous function (of degree one) of the constraints.
Note that the proof of (30) (and hence of (4)) in the Appendix is valid also for non-linear
constraints.

The expansion of y in a reciprocal basis (cf (4)) can be explicitly written in terms of
correlation matrices. For simplicity we limit the derivation to linear constraints. Let W,
W =aCa’, be the correlation matrix for the constraints

W, = (fr(x)fs (x»: Cij = (xixj>~ (32)

Note also (say from (Al)) that dA/0A =W, so that using the chain rule, dy/6A =
(8y/0A)(OA/3A) = (ay/aA)W_l. By explicit differentiation of (10), a(3y/3A)=W and
hence a'W™'a(dy/oA)=a" or

y=(3y/3A)A =(@"W'a)'a"W'A =Ca’W'A. (33)

3.4. Sequential inference

As a consistency check on the formalism, consider the change in the entropy upon the
inclusion of additional constraints. Let Q(x) be the distribution of maximal entropy
subject to M' constraints (M' > M)

0=<) Q(x)In(Q(x)/P(x))

=Y Q(x)In(Q(x)/g(x)~Y, Qx) In(P(x)/g(x))

X

=-So[x]-Y P(x)In(P(x)/g(x))

=Sp[x]—So[x]. (34)

The first expression is non-negative by Gibbs’ inequality, and the replacement of the
second by the third expression in (34) is possible since, by definition, Q(x) is consistent
with all the M constraints used to characterise P(x), hence

[axpwpw=[arwaw, =10 (35)
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and the result follows upon use of (21). Equality in (34) holds if (and only if)
Q(x) = P(x). Hence, upon the addition of further constraints, either the distribution of
maximal entropy remains unchanged (i.e. the new constraints are not informative) or
the distribution is changed, in which case the value of its entropy goes down.

4. Applications

Four general classes of inversion problems using linear constraints are examined in
some detail. Their most important common characteristic was already implicitly
derived in § 3.2. Since the entropy is a function of the constraints, and since the
constraints can be recast as the values y; = (x;) (cf (28)), it follows that one can regard the
entropy not as a function of P(x) but directly as a function of the y;s. As we shall show
by the examples, it is indeed possible to compute the entropy as an explicit function of
the y;s and thereby obtain a simplified procedure.

4.1. The inversion of average values and of frequency data

A single experiment can result in any one of N outcomes. It is required to infer the
number of times the ith outcome, i =1, 2, ..., N, has been realised in #» independent
repetitions of the experiment. The data available are the M average values

N
A,—= Z an;, r=1,...,M, (36)
i=1

where a,; is the value of the rth observable for the ith outcome. In the more usual
application of the maximum entropy formalism we are asked to infer the probability p;
of the ith outcome subject to given average values and, as is well known (Jaynes 1957,
Tribus 1961), obtain

pi= exp(—r}‘gO z\,ari)- (37)

This problem thus serves as a check on the formalism, which should recover result (37).
As a bonus for working harder we shall however obtain additional insight.

The distribution of outcome vectors n (2 n,; = n) which is of maximal entropy subject
to the M constraints (36) is

M N
P(n)=g(n) exp[——n/\o— Y (X a,,n,-)]. (38)
r=1 i=1
Here g(n) is the degeneracy factor given by (16), and for future convenience we have

written the Lagrange parameter conjugate to the normalisation constraint as #A ¢. Using
the definition (29) of u; and putting p; = exp(—Ao—u:),

=

N
P(n)=g(m) [T pi=n! T p7/n! (39)

i=1

It

Using (29), p; is seen to be given by (37). We recognise (39) as the multinomial
distribution, which is the standard probability theory result (e.g. Feller 1968) for the
distribution P(n), with p; being the probability of the ith outcome.
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The inference for n; is
(niy=3 nP(n)= np, (40)

and the variance of the inference is

(n?)=(n)* = n*[p;(1 - p)/nl. (41)

Both these results are as expected, with the fractional variance decreasing as n ™"
For this problem the ‘partition function’ exp(nA) can be explicitly computed:

N n
exp(nio) Z H exp(—uin;) = (; exp(—w))

H ni! iz

or
N
Ao = 1n< .;1 exp(—/,L,-)>. (42)

The result can be verified by noting that P(n) can be regarded as the distribution of
maximal entropy subject to the N (N>M) not necessarily linearly independent
constraints (n;). The Lagrange parameter conjugate to (n;) is u;. Using the general
identity

A, = =) In(partition function)/3A,, (43)

we verify (40):
(ni)=—0(nAo)/d; = exp(—nAo)d exp(nAo)/du; = n exp(—Ao—wu;) = np. (44)

The entropy of the distribution P(n) is defined by (18). Using the explicit result (38)
for P(n), ‘

M N
S[n]=n/\0+ Z /\,A,=n/\0+ z ,LL,'<7’Z[>, (45)
r=1 i=1
but since u; = —In p; — Ao,
N
Sfnl=-n 3 pilnp (46)
i=1

The maximal value of S[n] determined via the present procedure coincides with the
value determined by the more familiar approach which works with the probabilities p;
from the very start. Inother problems where (x;) cannot be interpreted as a probability,
we could still express S[x] in terms of the (x;)s (e.g. equation (59) below), but the
functional dependence will not be that in (46). As will become obvious, the particular
dependence in (46) reflects the structure of the degeneracy factor g(n). Different
factors give rise to different functions S({(x)). If we could learn to recognise these
functions, then a short cut could be achieved. In the same way that one determines the
probabilities directly by maximising (46) subject to average value constraints (Jaynes
1957, 1963, Tribus 1961), one could, in general, determine the optimal y by maximis-
ing S[y] subject to any available linear constraints.
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4.2. Uniform prior distribution

In the absence of any prior constraintst, and when the data correspond to linear
constraints, the different components of x are independent of one another:

M N N
Plx)=exp[ 20— %, (3 aa) | = IT PGa, @7
wheret, using (29),
P(x;) =exp(—Ao; — mixi), (48)
exp(Ao;) = Z exp(—uix;). (49)

As is obvious from (47) and (29), the partition function factorises,
N
exp(Ao) = [Il exp(Aoi), (50)

while the entropy can be expressed as the sum of the entropies of the distributions of the
different components:

Slx]=~Y P(x)In P(x)=—Y ¥ P(x))In P(x;) =), S[x:]. (51

ioxq

Problems where the partition function can be readily evaluated include: (i) x; can
assume only the values 0 or 1; (ii) x; assumes non-negative integer values; and (iii) x; is
continuous and positive.

exp(Ao;) = Z exp(—ux;)

=1+exp(—w), x=0,1 52
=[1—-exp(—u)]", x=0,1,2,...
=1/ x;=0.
The results of the inversion determined using (x;) = —dA¢;/du; are
yi = (x;) = [exp(u:) +1177, x=0,1
=fexp(u:)—117", x=0,1,2,... (53)
=1/ s x; =0.
It is worthwhile to recall that in all these results
M
mi= rgl Ay (54)
and so they are valid for any set of linear constraints.
The entropy
S[x]=Ao+p.{x) (55)

+ The results of this section remain valid as long as g(x) can be expressed as a product of degeneracy factors,
one for each component of x. In this case (48) must have the RHs multiplied by g;, and similar simple
modifications are required in other results.
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can now be explicitly computed as a function of (x). For the first two cases,

wi =In[(1F{x))/(x:)], (56)
while the third case corresponds to the (x;)« 1 limit,
wi =1/(x), x =0, (57)

Hence, for the first two casesT

ST)= 3 {6 Il(L% ()] F 1 In(L 7 ) (58)
while for x;=0
S[x]= IZV: In{x;)+ N. (59)

One can now seek to infer (x;) by maximising S[x] subject to the constraints A = a{x).
One readily verifies that this does lead back to (53). Clearly it is far simpler to solve the
maximal entropy problem using (58) or (59). In either case, the results (53) require only
about two lines of algebra. For example, varying (59), the variational problem is

Zi, 5<xi>(<xi>_l —; /\ran'> =0, (60)

while for the first two cases the term (x;)"! in (60) needs to be replaced by In[(1¥F
(x)/{x:)].

As a check of the results one can compute dS[x]/3A,. For all three cases one verifies
that it equals A,, e.g. for case (iii)

N N M
5/0A,= Y. (25/3y)(@/3A) = ¥ ( L Aau)an
Ags gsM

M
—_S;AS(SS“I_{O , q>M.

(61)

4.3. Expansion in a basis set

A familiar procedure for obtaining an approximation for an unknown vector y is to
expand it in a basis set:

o T

yi= 2 anA, or y=a' A (62)

r=1
Here a, is the ith component of the rth vector in the set. To obtain an exact
representation it will be necessary, in general, to include all N basis vectors in the
expansion (where N is the dimension of the space, i.e. the range of the index /). Withno
loss of generality we take the basis vectors to be orthonormal:

N
‘; Ans =8, or aa =1. (63)

T In the presence of degeneracy, but provided g(x) =II g, a similar discussion does go through except that all
three ones inside the braces in (§8) need to be replaced by g;. In (59), In({x;)) is replaced by In({x;)/g;). With
these changes, (58) is the familiar result for the Fermi-Dirac and Bose-Einstein statistics (see e.g. Landsberg
1959).
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The expansion coefficients are then determined, as usual, from (62) and (63) as
N
A =) anys (64)
i=1

Say now that only M (M < N) coefficients A, are available. The conventional approach
is to replace the exact expansion (62) by the (possibly) approximate one

M
yi = z ariAr~ (65)
r=1
This is often described as an optimal (in a least-squares sense) choice. Indeed, among
all possible linear expansions of the form

M

yi= 21 X, (66)
the choice X, = A, does minimise the square deviances from the exact result. Yet from
another point of view, the choice (65) is quite disturbing. In principle one requires N
coefficients A, to represent y. In practice only M coefficients are known. The
approximation (65) then implies that all unknown N —M coefficients are identically
zero. But why? What possible grounds does one have for assuming that just because
these numbers are unknown they must be zero? Surely a point of view that argues that if
these coefficients are unknown their value should be inferred from the values of the
known coeflicients deserves at least a hearing.

There are, of course, practical grounds for preferring the linear expansion (65). Itis
therefore important to note that the maximal entropy solution can also be written as a
linear sum of M terms (cf (4)),

M
yi= Z birAr' (67)
r=1

The essential difference here is that the vectors of the reciprocal basis b are not the
vectors of the original basis, i.e. b # a’. The reason is, of course, that while aa” =1I,a"a
is the identity matrix only when the index r rangers over 1 to N, which is not the case in
(67).

The linear expansion (67) is one way of writing the maximum entropy solution.
Another is

M N
vi=Y @At ) agA, (68)

r=1 g=M+1
i.e. as a linear combination of all N basis vectors. To determine the maximal entropy
inference for the coefficients A, M <g < N, consider the case where y; is a continuous
variable so that the entropy S[y] is given by (59). In seeking the maximum, the
variation is over all vectors y of the form (68), where the coefficients A,, r < M, are fixed
and only the coefficients A,, M < g < N, may be varied. Inserting the expansion (68) in
(59), the extremum is implicitly given by

3S[y1/aA, =0, M<g<N
or (69)

N N
'21 (y:')_la))i/aAq =0 = '21 (Yi)_laqia M<g=<N.
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In other words, the inverse of the optimal inference must be orthogonal to all the basis
vectors whose expansion coefficients are unknown. This conclusion is to be contrasted
with the usual assumption that the unknown solution itself is orthogonal to those
vectors whose expansion coefficients are not available.

The result (69) can be written as

-1 M
yi' =2 Man (70)

where the M unknown multipliers A, are just our previous Lagrange parameters.

Lest one concludes that the only difference between the present, (70), and the
conventional, (65), results is that they are inverse to one another, we hasten to reiterate
that the form (70) applies only when y; is a continuous non-negative variable. For the
other two cases of § 4.2 the entropy is given by (58), and it is In[(1Fy,)/y;] which is
found to be orthogonal to the vectors a,, Hence

M
In[(1Fy)/y:]= ;1 Ay

or

M -1

yi= [exp< ) A,ari)il] , (71)
r=1

which is just our previous result (53).

The real practical difference between the linear (equation (65)) and the maximum
entropy inferences is that the latter requires the evaluation of the M Lagrange
parameters (using the M values A,). If M is comparable with N, then one may well be
tempted to avoid the extra work and use the linear expansion. After all, the linear
expansion is the best approximation of the form

M

yi = Z aran M<N’ (72)

r=1

while the maximum entropy result is the best approximation of the form

N

Vi= Z a.X,. (73)
r=1

If M is near N, the additional freedom in (73) (which is an expansion in a complete set of
basis vectors) is possibly not important. However if M <N (and particularly if M « N),
the difference can be dramatic. An objection that can be raised is that it may be that the
correct solution is exactly given by (67) with only M terms. If we know this to be the
case, then we know that A, =0 for g > M, the two procedures will give identical results,
and there is no paradox. If we do not know the exact solution, then the probable
deviation is smaller using the maximal entropy procedure.

We have centred attention on the case where the basis vectors a,; are orthonormal.
There is however a celebrated problem where they are not, i.e. the problem of moments
(Shohat and Tamarkin 1943), where a,; = i". The problem of inversion using a finite set
of moments has indeed been discussed, but its thrust was in determining upper and
lower bounds (Gordon 1968, Corcoran and Langhoff 1977). We thus defer comparison
with these results to a sequel paper which considers the bounds on y; which are provided
by the present formalism. There we shall also argue that it is possible to determine the
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expansion coeflicients A,, g > M, directly and in a recursive fashion (i.e. in the sequence
Apr+1s Apaz, . . ) in terms of the known set of M coefficients A,, and also pay special
attention to the case where the a,s are eigenvectors of a matrix so that (62) is an
eigenfunction expansion (Hall 1963).

4.4. The determination of line shapes

The concept of the line shape (as a function of frequency) arises in many diverse
applications. There have been previous discussions of line shapes which did invoke the
procedure of maximising the entropy. Mostly, they normalise the line shape to unity,
and regard it therefore as a probability density function whose entropy is to be
maximised subject to constraints (Powles and Carazza 1970, Berne and Harp 1970,
Czajkowski 1973, Carazza 1976). In another point of view (Burg 1972, as quoted in
Smylie e al 1973, Carazza 1976), the maximum entropy inference is used in an attempt
to eliminate the effects of noise with specified statistical properties. Here we consider
the problem as an example of the determination of a function (of a continuous
argument) which is not fully specified by the data. The maximum entropy formalism is
used to provide an optimal inference in the face of uncertainty. No special statistical
properties of the uncertainty need be invoked. On the contrary, we seek the maximally
non-committed functional form which is consistent with the data. We shall recover as
special cases the results of the previous authors without having to include any assump-
tions about the distribution of noise (or of errors (Carazza 1976)).

The index i is here allowed to vary continuously (as it stands for the frequency), and
y; will be written as a{w). (The vector space of solutions is now a general normed
function space.) We consider the situation where the line shape need not be regarded as
a probability density, so that the results are the analogues of those discussed for the
discrete case in §§ 4.2 and 4.3.

The magnitude a(w) of the line shape at a given frequency is a continuous
non-negative variable. If the constraints are linear,

A,=dea,(w)(a(w)), r=0,1,..., M, (74)

then the discussion of case (iii) of § 4.2 applies except that a,; is replaced by a,(w) and
integration over w replaces the summation over /. The expression for the entropy is
thus (cf (59))

Slal= J. do In{a(w)), (75)
or

Ste)= [ do p(@) In(ew))/o(w) (76)

when degeneracy is present (but does not correlate different frequency components so
that p(w) is the continuous analogue of g; in the discrete case). To prove that (76) is the
proper generalisation of (75), note that it is invariant to change of variable, and that a
measure of uncertainty should indeed be invariant under such a transformation (Jaynes
1963). Those who find the argument less than fully convincing are asked to note that a
density of states in information theory is essentially a Jacobian of the transformation
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from f to w, where a(f) is uniform in the absence of constraints (Dinur and Levine
1975). Hence

Sla= | af n(a (). 77

Changing variables, and using p(w) = 8f/dw, we recover (76).
The optimal inference for a(w) using the M +1 constraints A, is obtained as
previously by maximising the entropy S[a] subject to the constraints:

-1

() =( % 1a) - (78)

If the functions a,(w) are orthonormal (which can always be arranged since they are
linearly independent), we have as an alternative representation

@)= 3 Aalo) 79)

Here the first M + 1 coefficients A, have the values assigned by the data, and the rest are
the inferred values, determined in principle by equating (78) and (79). The two
equations can be combined in one, namely

A, =de aq(w)/<r§0)\,a,(w)). (80)

For g < M, this equation defines the values of the M +1 Lagrange parameters A, in
terms of the M +1 given values A,, r=0,1,..., M. For g > M, this equation defines
the values of A,. For practical purposes it is clearly preferable to determine the value of
Ag q> M, directly in terms of the A,’s, r < M, as mentioned already in § 4.3.

The result (78) generalises the expression of Burg (1972, see e.g. Smylie et al 1973),
who examined the problem of a Fourier series representation (a.{w) = exp(irw)). The
essential point in the generalisation is however in delineating the limitation on the
result. Burg was particularly concerned with inference in the presence of noise, for a
time series which is a Gaussian process. As is clear from the present discussion, the
result is independent of the origin of the uncertainty. Thus while the previous
derivation (Smylie er al 1973) of expression (75) for the entropy appears to be strictly
limited to Gaussian processes, the present derivation demonstrates that it is not. The
assumptions that do go into (75) are a (w) = 0, the linear nature of the constraints, and a
uniform g(w), as otherwise (76) is to be used.

The Lorentzian line shape

a(w)=T/mw’ 20w + (@5 +T)] " = /M0 -w)*+T°T"  (81)
is a special case of (78), where the Lagrange parameters can be explicitly evaluated. The
three constraints are
1=A0=J‘dwa(w), wo=A1=dewa(w), F2+wg=J-dww2a(w),
(82)

where the last two integrals need to be defined with care (e.g. between finite limits). The
present derivation differs from the recent one by Carazza (1976) in that experimental
errors need not be invoked to prove the result.
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S. Summary

The procedure of maximal entropy is usually employed to induce a probability
distribution given only partial data. This paper argued that the procedure need not be
limited to inferences regarding probabilities, but can be used as a general inversion
procedure and that inductive inferences can be drawn regarding the most reasonable
values of general (if necessary, dimension-bearing) variables. Particular attention was
given to the solution of an incompletely specified inversion problem using data linear in
the unknown variable of interest (so called ‘linear constraints’). Three equivalent forms
of the solution were presented:

(i) As an average over the distribution of maximal entropy, where the explicit form
(e.g. (70)) is dependent on the Lagrange parameters conjugate to the constraints,

(ii) As an expansion in functions of the reciprocal basis set, e.g. (4). The number of
terms in such an expansion is finite and equals the number of constraints, but the
reciprocal basis needs to be determined as it is tailor-made for the constraints.

(iii) As an expansion in a fixed basis set, where the number of terms equals the
number of points which the function need be determined.

Several types of applications were examined in some detail, and the use of a
‘reduced’ formalism was demonstrated for linear constraints. The reduction enables
one to solve the inversion problem directly without having first to consider the
distribution of maximal entropy as an intermediate construct.
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Appendix

To prove (30), consider the condition of linear independence of the constraints

dA0/3A, =80, =3, dP(x)/0A, =Y. Y (3P(x)/3A)(3As/3A,)

=Y 2 —f()P(x)(A,/0A,) ==Y A;0M/0A, ==Y, A;0M,/0A,. (A1)
Hence, recalling that fo(x) =1,
P(x)=) f,(x)P(x)8,0=Y, — f(x)P(x)A,(8A,/8A;) =Y. A;(8P(x)/3A,). (A2)

S’

As a simple example, take a one-dimensional problem where x is a non-negative
integer and the constraints are A, =(1) and A; = (x):

QO

(1y= §=:0 exp(~Ao—pux) = exp(—Ao)/[1—exp(—u)], (A3)

(x)= 20 x exp(—Ao—ux)=(1)/[exp(u)—1] (A4)
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One now eliminates Ao and u in favour of (1) and (x), so that

P(x)=exp(=Ao—ux) = (D1)/ (D + N[0}/ (1) + x )] (A5)

The distribution is clearly homogeneous of degree one in the constraints,
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