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Abstract. An inversion procedure which provides the most conservative inference for an 
unknown function in terms of partial data is discussed on the basis of information theoretic 
considerations. The method is based on the procedure of maximal entropy, but is not 
limited to the estimation of unknown probabilities. Rather, inductive inferences can be 
drawn regarding the values of general (if necessary, dimension-bearing) variables. The 
solution of an inversion problem using data linear in the unknown function is discussed in 
detail and explicit results are obtained. For every class of problems with common symmetry 
properties, the general algorithm can be reduced to a more direct procedure. When the data 
consist of average values for an unknown distribution, the general approach is in the spirit of 
the Darwin-Fowler method, while the reduced route is the procedure of maximal entropy 
(‘method of most probable distribution’) as usually employed in statistical mechanics. Other 
classes of problems discussed include the representation of an unknown function in a 
complete orthonormal basis using as input a partial set of expansion coefficients, and the 
inference of line shapes and power spectra. 

1. Introduction 

An inversion procedure is required whenever the available measurements depend on 
the value of a function of interest at more than one point. A well-known example is the 
determination of the interparticle potential from scattering (or transport) measure- 
ments. Another familiar example is in statistical mechanics, where the probabilities o€ 
occupation of the different quantum states are determined, say, from the given average 
energy of the system. There is, of course, an essential difference between our usual 
approaches to these two (and similar) problems. In the former we require extensive 
data before we proceed, while in the latter a seemingly insufficient characterisation of 
the unknown probabilities is deemed to be an appropriate starting point. The purpose 
of this paper is to advocate the adoption of the guiding principles of the methods made 
familiar by statistical mechanics to other inversion problems where a similar need 
arises. The present approach is similar in spirit to the Darwin-Fowler (1922) method, 
but for reasons which will become obvious it uses Lagrange multipliers rather than the 
steepest-descent technique. On the other hand, it is very much motivated by the 
information theoretic approach (Jaynes 1957, 1963, Tribus 1961) to statistical 
mechanics. 

t Work supported by the Office of Naval Research. 
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One can argue that the methods of statistical mechanics are particularly geared to 
the physics of the problem and so cannot be applied indiscriminately elsewhere. Maybe 
so, but the prospect of an inversion procedure using incomplete data is perhaps of 
sufficient interest to warrant a closer examination. One can also argue that the essential 
difference between the two problems above is not one of physics but of a methodologi- 
cal point of view; whereas one wants to deduce the potential, one is quite accustomed to 
inducing a probability distribution. In other words, one can regard statistical reasoning 
as an application of the methods of inductive inference (Jaynes 1957, 1963, Tribus 
1961, 1969, Levine and Tribus 1978). There is then no inherent objection to employ- 
ing similar methods for other problems involving only a partial characterisation of the 
variable of interest. 

Section 2 defines the problem in a technical sense, and shows that a solution of the 
inversion problem is possible. It does so by introducing a ‘reciprocal’ basis set, whose 
dimension equals the number of independent pieces of data (the ‘constraints’) that are 
available. Using this basis it is always possible to invert the implicit equations which 
define the variable of interest. The procedure of maximal entropy as applied to the 
inversion problem is discussed in 0 3. Section 4 provides explicit discussion of four 
classes of problems, whose common denominator is that the available data are linear in 
the variable of interest. The discussion is also used to offer complementary inter- 
pretations of the formalism. In particular it is shown that (as in statistical mechanics) it 
is not necessary to go back to the full formalism every time a new problem is considered. 
Instead, one can use a simpler form of the entropy (or of the partition function) which is 
suitable for the class of situations of which the particular problem is a member and 
proceed from there. Work is in progress on various practical aspects of the formalism 
(as is discussed in 0 4.3) and on concrete applications of the inversion procedure, with 
special reference to the determination of potentials from scattering data, in collabora- 
tion with Professor R €3 Gerber. 

2. General considerations 

Consider a variable U which assumes the value ui at the point? i, i = 1,2 ,  . . . , N. The 
purpose of the inversion procedure is to determine the set of values ui. The data 
available are the values of different functionst of U, 

Ar = f r ( u ) ,  r = l , 2  , . . . ,  M, M < N ,  (1) 

The vector notation for the argument off, serves as a reminder that f r ( u )  will in general 
depend on the value of U at more than one point. The simplest example is that of a 
linear condition 

N 

where the matrix a is given. 

i To keep the mathematics simple we shall (if necessary) proceed to the limit where i is continuous only at the 
final stage of the procedure. Otherwise one needs to interpret various derivatives as functional derivatives. 
i: To ensure the uniqueness of the procedure these conditions need to limit the range of possible solutions to a 
convex set, so that a linear combination of possible solutions is also a solution. If they do not, then the 
procedure may be applied by regarding f,(u) itself as the unknown function. 
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The problem is that the range of r is smaller (or even very much smaller) than that of 
i. Hence the M conditions, (l), do not in themselves suffice to determine the uis 
uniquely. The conditions do however constrain the range (which we assume to be 
convex) of possible solutions, and the problem is to further narrow down the choice to 
some particular vector y which will be the ‘best’ inference for the unknown U. 

2.1. The reciprocal basis 

That a solution to the inversion problem is not out of the question is suggested by the 
following argument. Consider for simplicity the linear case 

ay = A .  (3) 

If a is a square matrix and has an inverse, one can solve for y directly: 

where 

ab = I .  

Now the whole point is that a is not square. One can still however satisfy (5) as follows. 
The components of y are to be determined using the given values of the A,s. Different 
values may well yield a different infe,rence for y .  Hence y is a function of A, and one can 
define a rectangular matrix b by 

bi, = dyi/dA,. ( 6 )  
Then a and b are conformable, and 

(ab), ,  = aA,/dA,. (7) 
The condition 

aArldA, = S,,, (8) 
where S , ,  is the Kronecker delta, is simply the condition that the constraints are linearly 
independent, i.e. that there is no non-trivial set of numbers cy, such that 

M 

r = l  
a o =  1 Qrfr(y) .  (9) 

If in practice this is not the case, then the number of constraints can be reduced until 
only a linearly independent set is left. It can be shown? that the constraints that have 
been so eliminated are non-informative in the sense that their inclusion would not 
change the inference regarding y .  

In the Appendix it is shown that the inversion procedure introduced in 0 3 defines 
the reciprocal set even for non-linear constraints, and a simple example is worked out. 

The observation that y is a homogeneous function of degree one in the Ars is also of 
importance in showing that if y bears dimensions then it will scale properly whenever 
the units used to express the value of A, are changed. 

+ The proof is based on showing that the distribution P ( x )  which is introduced below and which is used to 
define y (cf (10)) is unchanged by the elimination of the linearly dependent constraints (see e.g. Alhassid er a1 
1978). There is no harm in including linearly dependent constraints; these only lengthen the algebra, but may 
offer other advantages, as is discussed in 0 4. 
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2.2. The distribution P ( x )  

To determine the solution y explicitly, consider expanding it in the set {x} of all 
potential solutions of the inversion problem, 

yi = xiP(x) 
X 

if yi assumes only discrete values, or 

yi == dxxiP(x) I 
if yi is a continuous variable. The weight function P ( x )  is unknown except that yi must 
satisfy the M conditions (l), i.e. 

or if yi is continuous, 

For non-linear constraints, we take the conditions on P ( x )  to be 

Ar = dxfr(x)P(x), (12) 

with an equivalent form for the discrete case. 
The distribution P ( x )  can be regarded as the weight of the vector x, and definition 

(10) implies that y can be interpreted as the average over the distribution P ( x ) .  The 
reason for defining y as the average rather than any other statistic of P ( x )  is the familiar 
one that the average is the 'best' estimate in the sense that the expected square deviance 
of y from the exact solution U will be minimal. The present approach is thus similar to 
the point of view adopted in the Darwin-Fowler (1922, see also Schrodinger 1952) 
formulation of statistical mechanics. It does differ however in one essential detail, 
namely that we do not necessarily centre attention on the limit where the variance of 
P ( x )  is very small. 

2.3. Information theory 

The vector x i s  a sequence of numbers xi and can thus be regarded as a message in the 
sense of information theory. In his fundamental study, Shannon (1948, 0 7,  theorem 4 
in particular) introduced entropy as a measure of choice between messages. Since we 
are looking for a distribution which represents the widest choice (and hence does not 
unduly favour any particular x), we should take P ( x )  as the distribution of maximal 
entropy which is consistent with the constraints. This is the method of inference 
advocated by Jaynes (1957, 1963) except that, unlike the situation in statistical 
mechanics but as in Shannon's work, the probability distribution so computed has no 
direct observational relevance. It is simply a measure of the range of vectors x and so 
determines the sharpness of the inference. The narrower the distribution, the more 
likely is y to be an accurate estimate. The spread in P ( x )  is simply the price one pays for 
inverting with only a partial characterisation of the variable. As a consistency check, 
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one should note however that if the constraints do suffice to specify a unique solution, 
then the same solution will be given by the maximum entropy formulation (since P ( x )  is 
then a Kronecker (or Dirac) delta). Another consistency check is that the spread is 
typically reduced (and definitely does not increase, cf § 3.4) upon adding constraints. 

3. The procedure of maximum entropy 

The general considerations of 0 2 call for the determination of the distribution P ( x )  as 
the (unique, cf 0 3.4) distribution of maximal entropy among all those distributions 
which are normalised, 

c P ( x )  = 1, 
x 

and consistent with the constraints 

In what follows we define f&)  = 1 so that (14) represents M +  1 constraints, with A.  
being the value of the normalisation sum. 

While the solution of this constrained maximum problem is standard and has been 
explicitly considered (Tribus 1969), it does require some comments, particularly 
regarding the concept of the prior distribution. 

3.1. Entropy and entropy deficiency 

Given a set of messages, say {e}, such that in the absence of any data they are all equally 
likely, the entropy of the distribution of messages is given by (Shannon 1948, Khinchin 
1957) 

S[e] = -C P ( e )  In P(e ) .  (15) 

It follows from the convexity of the logarithmic function that S [ e ]  is indeed maximal for 
a uniform distribution. 

It is not unusual however to have to deal with messages where even in the absence of 
any specific constraints our prior knowledge dictates that not all messages are equally 
probable. The example discussed in detail in 0 4.1 is that of repeated independent 
experiments (so-called 'Bernoulli trials'). Say the message n is the set of numbers {n i } ,  
where ni is the number of times the ith outcome was observed to occur. Then even if all 
outcomes (in a single experiment) are equally probable, some sets of numbers { n i }  are 
more likely than others. The reason, as is well known, is that many sets { n i }  can be 
realised in more than one way. Specifically, if all outcomes are equally probable, the 
message n can be realised in g(n), 

e 

ways, where n = Xi ni is the total number of trials and Xn g(n) = 2" is the total number of 
distinct sequences of outcomes. In terms of the probability P ( n )  of a particular set {n i } ,  
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is the maximal value of S[e], and the second term in (18) is strictly non-negative (Levine 
and Bernstein 1976) and is termed 'the entropy deficiency'. It is the difference between 
the global maximum and the actual value of the entropy. To compute the entropy 
deficiency (or the entropy) one thus requires both the actual, P ( n ) ,  and the prior, Po(n) ,  
distributions 

If (and only if) P ( n )  = Po(n) ,  then S[e] = So[e]. The distribution of maximal entropy is 
thus unique, and as in other applications (Levine and Bernstein 1976, Levine 1978) we 
reserve the term 'prior' for the distribution determined to be of maximal entropy 
subject only to those constraints that are always present. As in the example above, such 
constraints typically reflect some symmetry that is inherent in the problem. In other 
words, g ( n )  is typically a degeneracy factor, i.e. the number of distinct messages that are 
grouped together (that are not resolved) by the index n. 

The constraints imposed in determining the prior distribution are inherent in the 
problem and are unchanged when additional data are available (excluding of course the 
obvious exception where the addition21 data imply that the degeneracy has been broken 
by some means). They are taken into account by writing the entropy as in (18) and are 
therefore automatically included when the entropy is maximised. If additional con- 
straints are present, the maximal value of the entropy (subject to these constraints) will 
then be lower than So and the entropy deficiency will be positive (cf § 3.4). 

3.2. The distribution of maximal entropy 

The unique? distribution P ( x ) ,  which is of maximal entropy subject to the constraints of 
normalisation and to M data constraints (14), is readily determined, using the Lagrange 
undetermined multipliers procedure, to be of the form 

The M + 1 (Lagrange) parameters are determined by the M + 1 conditions (14). The 
resulting set of equations 

i The distribution is unique whether the constraints are linearly independent or not, but uniqueness does 
require that the set of functions which are consistent with the value of constraints be convex. 
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where A ( x )  = f , (x) -A,, is coupled and highly non-linear. Except for special circum- 
stances, an analytical solution for the A,s is not possible. An efficient numerical 
procedure (Alhassid et a1 1978) has however been described, and the program, 
including user’s instructions, is available from the author upon request. 

In principle, the Lagrange parameters can be computed from the entropy of the 
distribution P ( x ) ,  which, using (18), is 

and hence (using (Al) )  

A, = aS[x]/aA,.  (24) 
Either (23) or (24) shows that if A, does bear dimensions then so does A,, and it does so 
in such a manner that if the units used to express the value of A, are changed, then the 
value of A, will change by a corresponding amount, leaving P ( x )  invariant. 

The functional form (21) demonstrates explicitly that, while the distribution P ( x )  of 
maximal entropy is unique, the constraints and their conjugate Lagrange parameters 
are not. One can always define equivalent constraints via the linear combinations 

which will yield an identical distribution P ( x )  provided only that the Lagrange 
parameters conjugate to the new constraints denoted by ks, 

transform in a contragradient manner. Indeed, the matrix d need not even be square, 
and in this fashion one can eliminate (or introduce) linearly dependent constraints. This 
freedom allows us to offer an alternative interpretation of P ( x ) .  Consider linear 
constraints 

Then one can rewrite (21) as 

where 

The functional form (28) can be derived directly as the distribution of maximal entropy 
subject to the (possibly not linearly independent) yi = (xi), i = 1, . . . , N, as constraints. 
This conclusion will be shown in 0 4 to offer a reduced level of description where no 
reference to P ( x )  need be explicitly made. 

3.3. The reciprocal basis 

The M +  1 Lagrange parameters and hence P ( x )  can be regarded as functions of the 
M + 1 constraints A,. Indeed the distribution of maximal entropy is a homogeneous 
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function of degree one in the constraints (Robertson 1967): 
M 

P ( x )  = 1 AraP(x)/aAr* 
r = O  

Intuitively the result is obvious. If all the constraints (including Ao) are scaled by the 
same factor, then clearly Pfx) should be unchanged. A short algebraic proof is given in 
the Appendix, where a simple example is also worked out. An important point to be 
noted is that the M + 1 constraints (and hence the M + 1 Lagrange parameters) must be 
regarded as independent variables in (30). This is in contrast to the common procedure 
in statistical mechanics which assigns A.  the value unity from the very start, and thereby 
makes ho a function of the other M Lagrange parameters. 

It follows from (30) that any expectation value computed using P ( x ) ,  e.g. A,, q >M, 

and in particular y = (x), is a homogeneous function (of degree one) of the constraints. 
Note that the proof of (30) (and hence of (4)) in the Appendix is valid also for non-linear 
constraints. 

The expansion of y in a reciprocal basis (cf (4)) can be explicitly written in terms of 
correlation matrices. For simplicity we limit the derivation to linear constraints. Let W, 
W = aCaT, be the correlation matrix for the constraints 

wrs = (fr(x)fs(x)), cij = ( X i X j ) .  (32) 
Note also (say from (Al) )  that aA/dA = W, so that using the chain rule, ay/dA = 
(ay/aA)(aA/dA) = (ay/aA)W-'. By explicit differentiation of (lo), a(ay/aA) = W and 
hence a'W-'a(ay/aA) = aT or 

y = (ay/aA)A = (aTW-'a)-'aTW-'A = CaTW-'A. (33) 

3.4. Sequential inference 

As a consistency check on the formalism, consider the change in the entropy upon the 
inclusion of additional constraints. Let Q(x) be the distribution of maximal entropy 
subject to M' constraints (M' > M )  

= -s&I-C P ( x )  ln(P(x)lg(x)) 

= S p [ x ]  - SQ[X]. (34) 

X 

The first expression is non-negative by Gibbs' inequality, and the replacement of the 
second by the third expression in (34) is possible since, by definition, Q(x) is consistent 
with all the M constraints used to characterise P ( x ) ,  hence 
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and the result follows upon use of (21). Equality in (34) holds if (and only if) 
Q(x) = P(r). Hence, upon the addition of further constraints, either the distribution of 
maximal entropy remains unchanged (i.e. the new constraints are not informative) or 
the distribution is changed, in which case the value of its entropy goes down. 

4. Applications 

Four general classes of inversion problems using linear constraints are examined in 
some detail. Their most important common characteristic was already implicitly 
derived in 0 3.2. Since the entropy is a function of the constraints, and since the 
constraints can be recast as the values yi = (xi) (cf (28)), it follows that one can regard the 
entropy not as a function of P ( x )  but directly as a function of the yis. As we shall show 
by the examples, it is indeed possible to compute the entropy as an explicit function of 
the yis and thereby obtain a simplified procedure. 

4.1. The inversion of average values and of frequency data 

A single experiment can result in any one of N outcomes. It is required to infer the 
number of times the ith outcome, i = 1 , 2 , .  . . , N, has been realised in n independent 
repetitions of the experiment. The data available are the M average values 

N 

i = l  
Ar = C arini, r = 1, . . . , M, (36) 

where ari is the value of the rth observable for the ith outcome. In the more usual 
application of the maximum entropy formalism we are asked to infer the probability pi 
of the ith outcome subject to given average values and, as is well known (Jaynes 1957, 
Tribus 1961), obtain 

This problem thus serves as a check on the formalism, which should recover result (37). 
As a bonus for working harder we shall however obtain additional insight. 

The distribution of outcome vectors n (Z ni = n )  which is of maximal entropy subject 
to the M constraints (36) is 

Here g(n!  is the degeneracy factor given by (16), and for future convenience we have 
written the Lagrange parameter conjugate to the normalisation constraint as nAo. Using 
the definition (29) of F~ and putting p i  = exp(-Ao-pi), 

Using (29), pi is seen to be given by (37). We recognise (39) as the multinomial 
distribution, which is the standard probability theory result (e.g. Feller 1968) for the 
distribution P ( n ) ,  with pi being the probability of the ith outcome. 
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The inference for ni is 

and the variance of the inference is 

Both these results are as expected, with the fractional variance decreasing as n-'. 
For this problem the 'partition function' exp(nAo) can be explicitly computed: 

or 

The result can be verified by noting that P ( n )  can be regarded as the distribution of 
maximal entropy subject to the N ( N  > M )  not necessarily linearly independent 
constraints (ni). The Lagrange parameter conjugate to (a i )  is pi. Using the general 
identity 

(43) A,  = -a ln(partition function)/&, 

we verify (40): 

(ni) = -a(nAo)/api = exp(-nAo)a exp(nAo)/dpi = n exp(-Ao- pi) = npi. (44) 

The entropy of the distribution P ( n )  is defined by (18). Using the explicit result (38) 
for P ( n ) ,  

r = l  i = l  

but since pi = -In pi - A ~ ,  

The maximal value of S [ n ]  determined via the present procedure coincides with the 
value determined by the more familiar approach which works with the probabilities p i  
from the very start. In other problems where ( x i )  cannot be interpreted as a probability, 
we could still express S[x] in terms of the ( x i ) s  (e.g. equation (59) below), but the 
functional dependence will not be that in (46). As will become obvious, the particular 
dependence in (46) reflects the structure of the degeneracy factor g ( n ) .  Different 
factors give rise to different functions S((x)). If we could learn to recognise these 
functions, then a short cut could be achieved. In the same way that one determines the 
probabilities directly by maximising (46) subject to average value constraints (Jaynes 
1957, 1963, Tribus 1961), one could, in general, determine the optimal y by maximis- 
ing S [ y ]  subject to any available linear constraints. 
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4.2. Uniform prior distribution 

In the absence of any prior constraints?, and when the data correspond to linear 
constraints, the different components of x are independent of one another: 

M N N 

r = l  i = l  i = l  
P ( x )  =exp[ -Ao-  C A r (  arixi)] = I-I P(xi) ,  

where?, using (29), 

P(xi) = exp(-Aoi -pixi), 

exp(Aoi) = C exp(-pixi). 
x, 

As is obvious from (47) and (29), the partition function factorises, 
N 

exp(A0) = exp(Aoi), 
i = l  

(47) 

(49) 

while the entropy can be expressed as the sum of the entropies of the distributions of the 
different components: 

Problems where the partition function can be readily evaluated include: (i) xi can 
assume only the values 0 or 1; (ii) xi assumes non-negative integer values; and (iii) xi is 
continuous and positive. 

exp(Aoi) = C exp(-pixi) 
XI 

= 1 + exp(-pl), 

= [ 1 - exp(-pu, )Ip1, 

= 1Ipu,, XI 2 0. 

x, = 0, 1 

XI = 0, 1,2 ,  . . . 

X I  = 0 , l  

x, = 0, I, 2, . . . 

The results of the inversion determined using (xl) = -8AoI/dpI are 

YI = (XI)  = [exp(pJ+ 

= [exp(pl) - I]-', 

= 1Ip1, x, 2 0 .  

It is worthwhile to recall that in all these results 

r = l  

and so they are valid for any set of linear constraints. 
The entropy 

S[X] = A 0  + /.t (x) 

(53) 

( 5 5 )  

t The results of this section remain valid as long as g(x) can be expressed as a product of degeneracy factors, 
one for each component of x. In this case (48) must have the RHS multiplied by gi, and similar simple 
modifications are required in other results. 
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can now be explicitly computed as a function of (x). For the first two cases, 

ki = ln[(l r hi))/(xi)I, (56) 

while the third case corresponds to the ( x i ) < <  1 limit, 

Pi = l / ( x i ) ,  xi 3 0 .  

Hence, for the first two casesi- 
(57) 

while for x i  3 0 
N 

S [ x ] =  C In(xi)+N. 
i = l  

(59 )  

One can now seek to infer ( x , )  by maximising S[x] subject to the constraints A = a(x). 
One readily verifies that this does lead back to (53). Clearly it is far simpler to solve the 
maximal entropy problem using (58) or (59). In either case, the results (53) require only 
about two lines of algebra. For example, varying (59) ,  the variational problem is 

c ~ ( x . ) (  ( x z ) - l - ~  A f i r i )  = 0,  (60) 

while for the first two cases the term (x1)-' in (60) needs to be replaced by l n [ ( l r  

As a check of the results one can compute aS[x] /aAr.  For all three cases one verifies 
( X l > / ( X I ) l .  

that it equals A,, e.g. for case (iii) 
N N M  

1=1 1 = 1  s = l  
W ~ A ,  = c (as/ayt)(ayl/aAq) = c ( c Asasl)aqI 

M q s M  
q >M. = C ASS,,, = ( t q ;  

s = l  

4.3. Expansion in a basis set 

A familiar procedure for obtaining an approximation for an unknown vector y is to 
expand it in a basis set: 

N 

P =  1 
y i =  C arAr or y = aTA. 

Here a,, is the ith component of the rth vector in the set. To obtain an exact 
representation it will be necessary, in general, to include all N basis vectors in the 
expansion (where N is the dimension of the space, i.e. the range of the index i). With no 
loss of generality we take the basis vectors to be orthonormal: 

N 

i = l  

T 
ariast = 8 , s  or aa =I.  

t In the presence of degeneracy, but provided g(x) = II g,, a similar discussion does go through except that all 
three ones inside the braces in (58) need to be replaced by g,. In (59), In((x,)) is replaced by ln((xi)/gt). With 
these changes, (58) is the familiar result for the Fermi-Dirac and Bose-Einstein statistics (see e.g. Landsberg 
1959). 
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The expansion coefficients are then determined, as usual, from (62) and (63) as 

Say now that only M ( M  < N )  coefficients A, are available. The conventional approach 
is to replace the exact expansion (62) by the (possibly) approximate one 

This is often described as an optimal (in a least-squares sense) choice. Indeed, among 
all possible linear expansions of the form 

the choice X r  = A,  does minimise the square deviances from the exact result. Yet from 
another point of view, the choice (65) is quite disturbing. In principle one requires N 
coefficients A, to represent y .  In practice only M coefficients are known. The 
approximation (65) then implies that all unknown N -M coefficients are identically 
zero. But why? What possible grounds does one have for assuming that just because 
these numbers are unknown they must be zero? Surely a point of view that argues that if 
these coefficients are unknown their value should be inferred from the values of the 
known coefficients deserves at least a hearing. 

There are, of course, practical grounds for preferring the linear expansion (65). It is 
therefore important to note that the maximal entropy solution can also be written as a 
linear sum of M terms (cf (4)), 

r = l  

The essential difference here is that the vectors of the reciprocal basis b are not the 
vectors of the original basis, i.e. b # aT. The reason is, of course, that while aaT = I, aTa 
is the identity matrix only when the index r rangers over 1 to N, which is not the case in 
(67). 

The linear expansion (67) is one way of writing the maximum entropy solution. 
Another is 

i.e. as a linear combination of all N basis vectors. To determine the maximal entropy 
inference for the coefficients A,, M < q s N, consider the case where y i  is a continuous 
variable so that the entropy S [ y ]  is given by (59). In seeking the maximum, the 
variation is over all vectors y of the form (68), where the coefficients A ,  r s M, are fixed 
and only the coefficients A,, M < q s N, may be varied. Inserting the expansion (68) in 
(59), the extremum is implicitly given by 

W Y  1 / 8 4  = 0,  M < q s N  

or (69) 
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In other words, the inverse of the optimal inference must be orthogonal to all the basis 
vectors whose expansion coefficients are unknown. This conclusion is to be contrasted 
with the usual assumption that the unknown solution itself is orthogonal to those 
vectors whose expansion coefficients are not available. 

The result (69) can be written as 

where the M unknown multipliers A, are just our previous Lagrange parameters. 
Lest one concludes that the only difference between the present, (70), and the 

conventional, (65), results is that they are inverse to one another, we hasten to reiterate 
that the form (70) applies only when yi is a continuous non-negative variable. For the 
other two cases of 0 4.2 the entropy is given by (58 ) ,  and it is ln[(l F y i ) / y i ]  which is 
found to be orthogonal to the vectors a,. Hence 

M 

ln[(l F y i ) / y i I  = 
r=l 

or 

which is just our previous result (53). 
The real practical difference between the linear (equation (65)) and the maximum 

entropy inferences is that the latter requires the evaluation of the M Lagrange 
parameters (using the M values Ar) .  If M is comparable with N, then one may well be 
tempted to avoid the extra work and use the linear expansion. After all, the linear 
expansion is the best approximation of the form 

while the maximum entropy result is the best approximation of the form 
N 

yi = arixr. 
r = l  

(73) 

If M is near N, the additional freedom in (73) (which is an expansion in a complete set of 
basis vectors) is possibly not important. However if M < N (and particularly if M << N ) ,  
the difference can be dramatic. An objection that can be raised is that it may be that the 
correct solution is exactly given by (67) with only M terms. If we know this to be the 
case, then we know that A, = 0 for q > M, the two procedures will give identical results, 
and there is no paradox. If we do not know the exact solution, then the probable 
deviation is smaller using the maximal entropy procedure. 

We have centred attention on the case where the basis vectors a,, are orthonormal. 
There is however a celebrated problem where they are not, i.e. the problem of moments 
(Shohat and Tamarkin 1943), where ari = i'. The problem of inversion using a finite set 
of moments has indeed been discussed, but its thrust was in determining upper and 
lower bounds (Gordon 1968, Corcoran and Langhoff 1977). We thus defer comparison 
with these results to a sequel paper which considers the bounds on y I  which are provided 
by the present formalism. There we shall also argue that it is possible to determine the 
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expansion coefficients A,, q > M, directly and in a recursive fashion (i.e. in the sequence 
AM+l, AM+*, . . .) in terms of the known set of M coefficients A,, and also pay special 
attention to the case where the a,;s are eigenvectors of a matrix so that (62) is an 
eigenfunction expansion (Hall 1963). 

4.4. The determination of line shapes 

The concept of the line shape (as a function of frequency) arises in many diverse 
applications. There have been previous discussions of line shapes which did invoke the 
procedure of maximising the entropy. Mostly, they normalise the line shape to unity, 
and regard it therefore as a probability density function whose entropy is to be 
maximised subject to constraints (Powles and Carazza 1970, Berne and Harp 1970, 
Czajkowski 1973, Carazza 1976). In another point of view (Burg 1972, as quoted in 
Smylie et a1 1973, Carazza 1976), the maximum entropy inference is used in an attempt 
to eliminate the effects of noise with specified statistical properties. Here we consider 
the problem as an example of the determination of a function (of a continuous 
argument) which is not fully specified by the data. The maximum entropy formalism is 
used to provide an optimal inference in the face of uncertainty. No special statistical 
properties of the uncertainty need be invoked. On the contrary, we seek the maximally 
non-committed functional form which is consistent with the data. We shall recover as 
special cases the results of the previous authors without having to include any assump- 
tions about the distribution of noise (or of errors (Carazza 1976)). 

The index i is here allowed to vary continuously (as it stands for the frequency), and 
y ;  will be written as a ( w ) .  (The vector space of solutions is now a general normed 
function space.) We consider the situation where the line shape need not be regarded as 
a probability density, so that the results are the analogues of those discussed for the 
discrete case in $0 4.2 and 4.3. 

The magnitude a ( o )  of the line shape at a given frequency is a continuous 
non-negative variable. If the constraints are linear, 

then the discussion of case (iii) of § 4.2 applies except that art is replaced by a,(@) and 
integration over w replaces the summation over i. The expression for the entropy is 
thus (cf (59)) 

S [ a ]  = I d o  ln(a(w)), (75) 

or 

when degeneracy is present (but does not correlate different frequency components so 
that p ( w )  is the continuous analogue of g, in the discrete case). To prove that (76) is the 
proper generalisation of (75), note that it is invariant to change of variable, and that a 
measure of uncertainty should indeed be invariant under such a transformation (Jaynes 
1963). Those who find the argument less than fully convincing are asked to note that a 
density of states in information theory is essentially a Jacobian of the transformation 
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from f to w ,  where a ( f )  is uniform 
1975). Hence 

s [ ~ I =  J d f l n ( ( a ~ ) ) ) .  

in the absence of constraints (Dinur and Levine 

(77) 

Changing variables, and using p ( w )  = af/ao, we recover (76). 

previously by maximising the entropy S[a] subject to the constraints: 
The optimal inference for a ( w )  using the M +  1 constraints A, is obtained as 

If the functions a , ( w )  are orthonormal (which can always be arranged since they are 
linearly independent), we have as an alternative representation 

Here the first M + 1 coefficients A, have the values assigned by the data, and the rest are 
the inferred values, determined in principle by equating (78) and (79). The two 
equations can be combined in one, namely 

For q s M, this equation defines the values of the M + 1 Lagrange parameters A, in 
terms of the M + 1 given values A,, r = 0, 1, . . . , M. For q > M, this equation defines 
the values of A,. For practical purposes it is clearly preferable to determine the value of 
4, 4 > M, directly in terms of the A,’S, r s M, as mentioned already in 0 4.3. 

The result (78) generalises the expression of Burg (1972, see e.g. Smylie eta1 1973), 
who examined the problem of a Fourier series representation ( a r ( w )  = exp(irw)). The 
essential point in the generalisation is however in delineating the limitation on the 
result. Burg was particularly concerned with inference in the presence of noise, for a 
time series which is a Gaussian process. As is clear from the present discussion, the 
result is independent of the origin of the uncertainty. Thus while the previous 
derivation (Smylie et a1 1973) of expression (75) for the entropy appears to be strictly 
limited to Gaussian processes, the present derivation demonstrates that it is not. The 
assumptions that do go into (75) are a ( w )  3 0, the linear nature of the constraints, and a 
uniform g(w) ,  as otherwise (76) is to be used. 

The Lorentzian line shape 

a ( w ) =  (r/.rr)[w2-2wow +(w;+r2)]-1 = (r/.rr)[(w -wo)2+r2]-1 (81) 

is a special case of (78), where the Lagrange parameters can be explicitly evaluated. The 
three constraints are 

wo=Al= d o  @a(@), r 2 + w ; =  1 dww2a(w), 
(82) 

J 1 =Ao= dw C U ( W ) ,  J 
where the last two integrais need to be defined with care (e.g. between finite limits). The 
present derivation differs from the recent one by Carazza (1976) in that experimental 
errors need not be invoked to prove the result. 
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5. Summary 

The procedure of maximal entropy is usually employed to induce a probability 
distribution given only partial data. This paper argued that the procedure need not be 
limited to inferences regarding probabilities, but can be used as a general inversion 
procedure and that inductive inferences can be drawn regarding the most reasonable 
values of general (if necessary, dimension-bearing) variables. Particular attention was 
given to the solution of an incompletely specified inversion problem using data linear in 
the unknown variable of interest (so called ‘linear constraints’). Three equivalent forms 
of the solution were presented: 

(i) As an average over the distribution of maximal entropy, where the explicit form 
(e.g. (70)) is dependent on the Lagrange parameters conjugate to the constraints. 

(ii) As an expansion in functions of the reciprocal basis set, e.g. (4). The number of 
terms in such an expansion is finite and equals the number of constraints, but the 
reciprocal basis needs to be determined as it is tailor-made for the constraints. 

(iii) As an expansion in a fixed basis set, where the number of terms equals the 
number of points which the function need be determined. 

Several types of applications were examined in some detail, and the use of a 
‘reduced’ formalism was demonstrated for linear constraints. The reduction enables 
one to solve the inversion problem directly without having first to consider the 
distribution of maximal entropy as an intermediate construct. 
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Appendix 

To prove (30), consider the condition of linear independence of the constraints 

Hence, recalling that f o ( x )  = 1, 

P(x) = f r ( X ) P ( X ) S r , o  = - fr(x)P( .~)A,!ahr/aAs)  = 1 As(aP(x) /aAs ) .  (‘42) 
r s ,r  S 

As a simple example, take a one-dimensional problem where x is a non-negative 
integer and the constraints are A.  = (1) and A I  = ( x ) :  

m 

( I )= exp(-Ao-px) =exp(-Ao)/[l -exp(-p)], 
x = o  
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The distribution is clearly homogeneous of degree one in the constraints. 

References 

Alhassid Y, Agmon N and Levine R D 1978 Chem. Phys. Lett. 53 22 
Berne B J and Harp G D 1970 Phys. Rev. A 2 2514 
Burg J P 1972 Geophys. J. 37 375 
Carazza B 1976 J. Phys. A: Math. Gen. 9 1069 
Corcoran C T and Langhoff P W 1977 J. Math. Phys. 18 651 
Czajkowski G Z 1973 J. Phys. A :  Math., Nucl. Gen. 6 906 
Darwin C G and Fowler R H 1922 Phil. Mag. 44 450 
Dinur U and Levine R D 1975 Chem. Phys. 9 17 
Edward J A and Fitelson M M 1973 IEEE Trans. Inf. Theory IT-19 232 
Feller W 1968 Introduction to Probability Theory and its Applications (New York: Wiley) 
Gordon R G 1968 J. Math. Phys. 9 655 
Hall G G 1963 J. Chem. Phys. 38 1104 
Jaynes E T 1957 Phys. Rev. 106 620 
- 1963 Statistical Physics (New York: Benjamin) p 181 
Khinchin A I 1957 Mathematical Foundations of Information Theory (New York: Dover) 
Landsberg P T 1959 Proc. Phys. Soc. 74 486 
Levine R D 1978 Ann. Rev. Phys. Chem. 29 59 
Levine R D and Bernstein R B 1976 Dynamics of Molecular Collisions (New York: Plenum) p 323 
Levine R D and Tribus M 1978 The Maximum Entropy Forma!ism (Cambridge: MIT) 
Powles J G and Carazza B 1970 J. Phys. A: Gen. Phys. 3 335 
Robertson B 1967 Phys. Rev. 160 175 
Schrodinger E 1952 Statistical Thermodynamics (Cambridge: UP) 
Shannon C E 1948 Bell Syst. Tech. J. 27 379 
Shohat J A and Tamarkin J D 1943 The Problem of Moments (New York: AMs) 
Smylie D E, Clarke G K C and Ulrych T J 1973 Meth. Comput. Phys. 13 391 
Tribus M 1961 Thermodynamics and Thermostatics (Princeton: Von Nostrand) 
- 1969 Rational Descriptions Decisions and Design [New York: Pergamon) 


